Asked by Nieajua Gonzalez on Jul 09, 2024

verifed

Verified

Solve ∣x∣<3| x | < 3x<3 , if possible. Write the answer in set notation.

A) {x∣x<3 or x<−3}\{ x \mid x < 3 \text { or } x < - 3 \}{xx<3 or x<3}
B) {x∣−3<x or x>3}\{ x \mid - 3 < x \text { or } x > 3 \}{x3<x or x>3}
C) {x∣−3<x<3}\{ x \mid - 3 < x < 3 \}{x3<x<3}
D) {x∣x<3}\{ x \mid x < 3 \}{xx<3}
E) no solution

Set Notation

A systematic way of writing sets, often using curly braces and symbols to define elements and operations on sets.

Absolute Value Inequality

An inequality that involves the absolute value of an expression, requiring consideration of both the positive and negative cases.

  • Comprehend and resolve absolute value inequalities.
verifed

Verified Answer

SO
shahrukh omari

3 days ago

Final Answer :
C
Explanation :
The correct solution is {x∣−3<x<3}\{ x \mid - 3 < x < 3 \}{x3<x<3} because the absolute value ∣x∣<3| x | < 3x<3 means x is less than 3 and greater than -3.