Asked by Katie Novak on Mar 10, 2024

verifed

Verified

Solve the equation by using the Quadratic Formula. u2−10u+18=0u ^ { 2 } - 10 u + 18 = 0u210u+18=0

A) u=10±u = 10 \pmu=10± 7\sqrt { 7 }7
B) u=10±u = 10 \pmu=10± 43\sqrt { 43 }43
C) u=5±u = 5 \pmu=5± 7\sqrt { 7 }7
D) u=−10±u = - 10 \pmu=10± 43\sqrt { 43 }43
E) u=−5±u = - 5 \pmu=5± 7\sqrt { 7 }7

Quadratic Formula

A formula used to find the solutions of a quadratic equation, given as \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\).

  • Resolve quadratic equations by applying the principles of the quadratic formula.
verifed

Verified Answer

BT
Brittany Taylor

Mar 10, 2024

Final Answer :
C
Explanation :
The quadratic formula is u=−b±b2−4ac2au = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}u=2ab±b24ac , where a=1a = 1a=1 , b=−10b = -10b=10 , and c=18c = 18c=18 . Plugging these values in gives u=10±(−10)2−4(1)(18)2(1)=10±100−722=10±282=5±7u = \frac{10 \pm \sqrt{(-10)^2 - 4(1)(18)}}{2(1)} = \frac{10 \pm \sqrt{100 - 72}}{2} = \frac{10 \pm \sqrt{28}}{2} = 5 \pm \sqrt{7}u=2(1)10±(10)24(1)(18)=210±10072=210±28=5±7 .